Predictor-Corrector Primal-Dual Interior Point Method for Solving Economic Dispatch Problems: A Postoptimization Analysis
نویسندگان
چکیده
This paper proposes a predictor-corrector primal-dual interior point method which introduces line search procedures IPLS in both the predictor and corrector steps. The Fibonacci search technique is used in the predictor step, while an Armijo line search is used in the corrector step. The method is developed for application to the economic dispatch ED problem studied in the field of power systems analysis. The theory of the method is examined for quadratic programming problems and involves the analysis of iterative schemes, computational implementation, and issues concerning the adaptation of the proposed algorithm to solve ED problems. Numerical results are presented, which demonstrate improvements and the efficiency of the IPLS method when compared to several other methods described in the literature. Finally, postoptimization analyses are performed for the solution of ED problems.
منابع مشابه
Risk Reserve Constrained Economic Dispatch Model with Wind Power Penetration
This paper develops a modified economic dispatch (ED) optimization model with wind power penetration. Due to the uncertain nature of wind speed, both overestimation and underestimation of the available wind power are compensated using the up and down spinning reserves. In order to determine both of these two reserve demands, the risk-based up and down spinning reserve constraints are presented ...
متن کاملNumerical Evaluation of SDPA (
SDPA (SemiDe nite Programming Algorithm) is a C++ implementation of a Mehrotra-type primal-dual predictor-corrector interior-point method for solving the standard form semide nite program and its dual. We report numerical results of large scale problems to evaluate its performance, and investigate how major time-consuming parts of SDPA vary with the problem size, the number of constraints and t...
متن کاملCorrector-predictor arc-search interior-point algorithm for $P_*(kappa)$-LCP acting in a wide neighborhood of the central path
In this paper, we propose an arc-search corrector-predictor interior-point method for solving $P_*(kappa)$-linear complementarity problems. The proposed algorithm searches the optimizers along an ellipse that is an approximation of the central path. The algorithm generates a sequence of iterates in the wide neighborhood of central path introduced by Ai and Zhang. The algorithm does not de...
متن کاملAn Efficient Primal-Dual Interior-Point Method for Minimizing a Sum of Euclidean Norms
The problem of minimizing a sum of Euclidean norms dates from the 17th century and may be the earliest example of duality in the mathematical programming literature. This nonsmooth optimization problem arises in many different kinds of modern scientific applications. We derive a primal-dual interior-point algorithm for the problem, by applying Newton’s method directly to a system of nonlinear e...
متن کاملSolving semidefinite-quadratic-linear programs using SDPT3
This paper discusses computational experiments with linear optimization problems involving semidefinite, quadratic, and linear cone constraints (SQLPs). Many test problems of this type are solved using a new release of SDPT3, a Matlab implementation of infeasible primal-dual path-following algorithms. The software developed by the authors uses Mehrotratype predictor-corrector variants of interi...
متن کامل